Abstract
Droplet manipulations are fundamental to numerous applications, such as water collection, medical diagnostics, and drug delivery. Structure-based liquid operations have been widely used both in nature and in artificial materials. However, current strategies depend mainly on fixed structures to realize unidirectional water movement, while multiple manipulation of droplets is still challenging. Here, we propose a magnetic-actuated robot with adjustable structures to achieve programmable multiple manipulations of droplets. The adjustable structure redistributes the resisting forces from the front and rear ends of the droplets, which determine the droplet behaviors. We can transport, split, release, and rotate the droplets using the robot. This robot is universally applicable for manipulation of various fluids in rough environments. These findings offer an efficient strategy for automated manipulation of droplets.
INTRODUCTION
Controllable manipulation of droplets is critical for a wide variety of applications (1–5), such as water collection and transportation (6), bioassay (7), and chemical reactions (8). Many plants and animals in nature manipulate droplets by exploiting their structures. Archetypal examples include cacti (9), spider silk (10), and the Namib Desert beetle (11), which collect and move water with conical spines, periodic spindle-knots, and convex bump structures, respectively. These asymmetric intrinsic structures induce a Laplace pressure gradient in the water droplets, causing the droplets to move in a preset direction (12, 13). Inspired by these strategies, various external forces, including electricity (14), magnets (4), acoustics (15), light (12), and wetting surfaces (16), are used to actuate droplets. Among them, magnetic force has the advantages of long-range action, safety, and easy control. Accordingly, many achievements have been reported to manipulate droplets using the magnetic force. For example, magnetic particles are used to drag water droplets on hydrophobic or wettability-patterned substrates (17, 18), and magnetically responsive materials are used to adjust the droplet wetting states for controllable droplet transportation (19–21).
Here, we report a facile and reliable method to achieve multiple manipulations of the droplet by a magnetic-actuated robot. This robot is prepared using a couple of steel beads in a programmable magnetic field. The structure of the robot, indicated by the ratio of the beads’ center-to-center distance to the bead diameter, can be facilely adjusted by the magnetic field. Differentiated robot structures redistribute the resistive forces at the front and rear ends of the droplet, leading to diverse droplet behaviors including transport, split, release, rotation, and their combinations. The robot is universal to many kinds of fluids, including water, oil, and gas. It is actuated by a magnetic field, making it robust for use in limited spaces, on uneven surfaces, and even under anhydrous and anaerobic conditions. This method offers a facile strategy for programmable and automated manipulation of droplets, which shows great potential in various applications including material transportation, microfabrication, and clinical medicine.
RESULTS
The droplet manipulation system consists of two steel beads and a magnetic control system (Fig. 1A). Here, we name the two steel beads as the “robot” (22–24). The diameter of the beads is 1.2 mm, and the robot is actuated by a magnetic control system, as shown in fig. S1. We can design both the movement and the structure of the robot by the magnetic control system. The sequenced images in Fig. 1 (C to F) show the multiple droplet manipulations using the magnetic-actuated robot (movie S1). We color the water droplets with food dyes for distinction. Different droplet behaviors can be realized by adjusting the robot structure. Figure 1B displays the key parameters of the robot structure, including the diameter of the beads (d) and the distance between the beads (D). The robot is hydrophilic (the characterizations of the beads and the substrate are shown in fig. S2) and can easily capture the droplet after contact. We can transport the droplet using the robot with a proper structure (Fig. 1C). To split a daughter drop or release the droplet, we adjust the structure of the robot by reducing or increasing the distance between the beads (Fig. 1, D and E). Revolving the robot can facilely rotate the droplet, which greatly accelerates the material mixing in the droplet (Fig. 1E). Besides manipulating large water droplets (250 μl), we also realize the control of micro-drops with volume smaller than 10 μl (fig. S3).
(A) Scheme of the droplet manipulation system. (B) Parameters describing the magnetic-actuated robot. (C to F) Typical behaviors of the droplets manipulated by the robot. Droplets can be transported (C), split (D), released (E), and rotated (F) by the robot. The gray arrows represent the moving direction of the robots. The moving speed is 2 mm/s. The volume of the droplets is 250 μl. Scale bar, 5 mm.
The droplet manipulation processes mainly rely on the structure of the robot, while the volume of the droplet (V) will surely influence the manipulating results. To exhibit the droplet manipulation ability of the robot, we systematically investigate the dependence of the droplet behaviors on the robot structure and the droplet volume and summarize the results in Fig. 2A. Here, the structure of the robot is quantified by the ratio of the beads’ center-to-center distance to the diameter (D/d), as shown in Fig. 2A. In general, droplet transport is achieved with moderate V and D/d; split of a daughter drop occurs when reducing D/d and enlarging V, while increasing D/d and/or V contributes to the release of the droplet from the robot. For example, the robot with a D/d of 1.67 can transport a 150-μl water droplet, while a daughter drop will be split and moved if the droplet volume enlarges to 350 μl. When increasing D/d to 3.33, the 350-μl droplet will be released by the robot, although the smaller droplet (150 μl) can still be transported (fig. S4 and movie S2).
(A) Phase diagram showing the diverse behaviors of the droplet with the variation of D/d and V. (B) Mechanical analysis explaining the actuating ability of the robot. Three forces, including the adhesion force between the liquid and the beads (Fa), the adhesion force between the liquid and the substrate (ffront), and the resilience force due to the deformation of the droplet (Fe), determine the movement of the TCL at the front end of the droplet (the upper scheme). Two main forces (Fe and frear) affect the movement of the TCL at the rear end of the droplet (the lower scheme).
To understand the origin of the diverse droplet behaviors performed by the robot, we conduct the mechanical analysis of this system, including the beads, the droplet, and the substrate, as shown in Fig. 2B. According to the droplet shape evolution (movie S1), the droplet behaviors are determined by the movement of the three-phase contact line (TCL) at the front end (the portion between the beads, as shown in Fig. 2B, top) and the rear end (Fig. 2B, bottom). Three forces decide the movement of the droplet at the front end. The driving force is the adhesion force between the beads and the droplet (Fa); the resisting forces include the elastic force due to the droplet deformation (Fe) and the adhesion force between the droplet front end and the substrate (ffront) (25). The net force at the front end of the droplet is
(1)where γ is the liquid surface tension; δ is the angle between the liquid and the moving direction (Fig. 2B); E is the elastic modulus of the droplet; ε is the tension rate of the droplet, which is equal to the stretched length of the droplet to the maximum stretched length (26); l is the contour of the TCL around the bead; A ≈ d ∙ D is the cross-sectional area of the liquid between the beads; θadv is the advancing contact angle of the droplet on the substrate; and L1 = D – d cosα. If the resisting force cannot be overcome by the driving force (Ffront ≤ 0), the TCL between the beads will be pinned, and the droplet will be released by the robot. Otherwise (Ffront > 0), the front end will be pulled by the robot, and the droplet split or transport will occur, depending on the force balancing at the rear end. Two forces determine the movement of the rear end of the droplet: the driving force arising from the moving of the droplet front end (Fe) and the resisting force arising from the liquid-solid adhesion on the rear end (frear). The net force at the rear end (Frear) is given by
(2)where θrec is the receding contact angle of the droplet on the substrate, L2 is the width of the thinnest liquid bridge behind the beads, and L3 is the maximum width of the TCL contour between the droplet and the substrate. The droplet can be transported if the net force (Frear) is positive; otherwise, a daughter drop will be split and transported. The detailed mechanical analysis and the phase diagram analysis are provided in sections S1 and S2. In addition, other factors, such as the droplet surface tension, the substrate fraction, and the size of the beads, also influence the droplet manipulation functions. Detailed analyses are shown in section S3.
Besides controlling the water droplet behaviors in the air, we systematically investigated the generality of the robot under different conditions (movie S3). Manipulation of oil or water drops under liquid environment is crucial to micro-organogel printing (27), soft robot fabrication (24), and emulsion reactions (28), especially because the reagents are sensitive to the atmospheric environment. After proper surface modification, the robot can be used to transport oil drops under water, move water drops under oil, and even collect gas bubbles under water. As shown in Fig. 3A, carbon tetrachloride (oil) droplets dissolved with bromine and styrene are placed under water. Dragged by the superhydrophobic beads, the two droplets approach and coalesce for the unsaturated bond detection (29). Similarly, a droplet of KSCN aqueous solution can be captured and moved by the superhydrophilic beads in an oil environment to react with another aqueous droplet (Fig. 3B). In addition, Fig. 3C shows that the superhydrophobic robot can also successfully capture and collect gas bubbles distributed under water, which shows potential for removing bubbles in microfluidic devices (30). The key principle for specific surface modification of the robot is that the contact between the robot and the manipulated fluid (fluid-2) cannot be replaced by the contact between the robot and the bulk fluid (fluid-1). The quantitative judgment criterion for the effective surface modification is
(3)where γ1, s, γ2, s, and γ1,2 are the interface energies of the fluid-1/bead, fluid-2/bead, and fluid-1/fluid-2 interfaces and α is the contact angle. This means that if we intend to manipulate fluid-2 in the bulk fluid-1, the contact angle between fluid-2 and the bead should be smaller than 90° (see the detailed analysis in section S4).